Introduction to Archival Storage at NERSC

Nick Balthaser Storage Systems Group

February 15, 2013

Agenda

Objectives

- Describe the role of archival storage in a tiered storage strategy
- Log into the NERSC archive
- Store and retrieve files from the archive
- Avoid common problems

Archive Basics

- What is an archive?
- Why should I use one?
- Features of the NERSC archive

Using the NERSC Archive

Note: Unix/Linux command-line familiarity required

- How to log in
- Storing and retrieving files with HSI
- Storing and retrieving directories with HTAR
- Avoiding common mistakes
- Questions, Problems, Further Reading
- Hands-on Examples

Archive Basics

What is an archive?

Long-term storage of permanent records and information

- Often data that is no longer modified or regularly accessed
- Storage time frame is indefinite or as long as possible
- Archive data typically has, or may have, long-term value to the organization

An archive is not a backup

- A backup is a copy of production data
- Value and retention of backup data is short-term
- A backup is a copy of data. An archive is the data.

Why should I use an archive?

Data growth is exponential

Cumulative Storage by Month and System

File system space is finite

- 80% of stored data is never accessed after 90 days
- The cost of storing infrequently accessed data on spinning disk is prohibitive
- Important, but less frequently accessed data should be stored in an archive to free faster disk for processing workload

Why should I use an archive (continued)?

Archives are an important component of a tiered data management strategy

- Align value and access patterns of data with media on which it is stored:
 - Flash: IO intensive workloads
 - · Disk: primary storage
 - Tape: backup, long-term storage (archive)

Tape still the lowest cost/GB

- 30 year shelf life
- Energy savings over disk
- Lower admin costs
- Lower bit error rate (BER)

Typical use cases at NERSC include:

- Long-term storage of very large raw data sets
 - Good for incremental processing
- Long-term storage of result/processed data
- Backups (e.g. global scratch purges)

Features of the NERSC archive

NERSC implements an "active archive"

- NERSC archive supports parallel high-speed transfer and fast data access
 - Data is transferred over parallel connections to the NERSC internal 10Gb network
 - Access to first byte in seconds or minutes as opposed to hours or days
 - The system is architected and optimized for ingest

The archive uses tiered storage internally to facilitate high speed data access

- Initial data ingest to high-performance FC disk cache
- Data migrated to enterprise tape system and managed by HSM software (HPSS) based on age and usage

The NERSC archive is a shared multi-user system

- Shared resource, no batch system. Inefficient use affects others.
- Session limits are enforced

Features of the NERSC archive, continued

- The NERSC archive is a Hierarchical Storage Management system (HSM)
- Highest performance requirements and access characteristics at top level
- Lowest cost, greatest capacity at lower levels
- Migration between levels is automatic, based on policies

- 8 -

Using the NERSC Archive

How to Log In

The NERSC archive uses an encrypted key for authentication

- Key placed in ~/.netrc file at the top level of the user's home directory on the compute platform
- All NERSC HPSS clients use the same .netrc file
- The key is IP specific. Must generate a new key for use outside the NERSC network.

Archive keys can be generated in two ways

- Automatic: NERSC auth service
 - Log into any NERSC compute platform using ssh
 - Type "hsi"
 - Enter NERSC password
- Manual: https://nim.nersc.gov/ web site
 - Under "Actions" drop down, select "Generate HPSS Token"
 - Copy/paste content into ~/.netrc
 - chmod 600 ~/.netrc

Storing and Retrieving Files with HSI

- HSI provides a Unix-like command line interface for navigating archive files and directories
 - Standard Unix commands such as Is, mkdir, mv, rm, chown, chmod, find, etc. are supported
- FTP-like interface for storing and retrieving files from the archive (put/get)
 - Store from file system to archive:

```
-bash-3.2$ hsi
A:/home/n/nickb-> put myfile
put 'myfile' : '/home/n/nickb/myfile' ( 2097152 bytes, 31445.8 KBS (cos=4))
```

Retrieve file from archive to file system:

```
A:/home/n/nickb-> get myfile get 'myfile' : '/home/n/nickb/myfile' (2010/12/19 10:26:49 2097152 bytes, 46436.2 KBS )
```

Full pathname or rename file during transfer:

```
A:/home/n/nickb-> put local_file : hpss_file
A:/home/n/nickb-> get local_file : hpss_file
```


Storing and Retrieving Directories with HTAR

- HTAR stores a Unix tar-compatible bundle of files (aggregate) in the archive
 - Traverses subdirectories like tar
 - No local staging space required--aggregate stored directly into the archive
- Recommended utility for storing small files
- Some limitations
 - 5M member files
 - 64GB max member file size
 - 155/100 path/filename character limitation
 - Max archive file size* currently 10TB
- Syntax: htar [options] <archive file> <local file | dir>
 - Store
 - -bash-3.2\$ htar -cvf /home/n/nickb/mydir.tar ./mydir
 - List
 - -bash-3.2\$ htar -tvf /home/n/nickb/mydir.tar
 - Retrieve
 - -bash-3.2\$ htar -xvf /home/n/nickb/mydir.tar [file...]
 - * By configuration, not an HPSS limitation

Avoiding Common Mistakes

Small Files

- Tape storage systems do not work well with large numbers of small files
 - Tape is sequential media—tapes must be mounted in drives and positioned to specific locations for IO to occur
- Mounting and positioning tapes are the slowest system activities
 - Small file retrieval incurs delays due to high volume of tape mounts and tape positioning
 - Small files stored periodically over long periods of time can be written to hundreds of tapes—especially problematic for retrieval
- Use HTAR when possible to optimize small file storage and retrieval
- Recommend file sizes in the 10s 100s of GB

Large Directories

- Each HPSS system is backed by a single metadata server
 - Metadata is stored in a single SQL database instance
 - Every user interaction causes database activity
- Metadata-intensive operations incur delays
 - Recursive operations such as "chown –R ./*" may take longer than expected
 - Directories containing more than a few thousand files may become difficult to work with interactively

```
-bash-3.2$ time hsi -q 'ls -l /home/n/nickb/tmp/testing/80k-files/' > /dev/null 2>&1
```

```
real 20m59.374s
user 0m7.156s
sys 0m7.548s
```


Large Directories, continued

hsi "Is –I" exponential delay:

Long-running Transfers

- Failure prone for a variety of reasons
 - Transient network issues, planned/unplanned maintenance, etc.
- Many clients do not have capability to resume interrupted transfers
- Can affect archive internal data management (migration) performance
- Recommend keeping transfers to 24hrs or less if possible

Session Limits

- 15 concurrent session/user enforced
- Can be administratively reduced if a user is negatively affecting system usability for others

Questions, Problems, Further Reading

Asking Questions, Reporting Problems

Contact NERSC Consulting

- Toll-free 800-666-3772
- **–** 510-486-8611, #3
- Email <u>consult@nersc.gov</u>.

Further Reading

- NERSC Website
 - http://www.nersc.gov/users/data-and-networking/hpss/
- HSI and HTAR man pages are installed on NERSC compute platforms
- Gleicher Enterprises Online Documentation (HSI, HTAR)
 - <u>http://www.mgleicher.us/index.html/hsi/</u>
 - http://www.mgleicher.us/index.html/htar/
- "HSI Best Practices for NERSC Users," LBNL Report #LBNL-4745E
 - <u>http://www.nersc.gov/assets/pubs_presos/HSIBestPractices-</u> Balthaser-Hazen-2011-06-09.pdf

Hands-on Examples

Logging into archive: Hands-on

- Using ssh, log into any NERSC compute platform
 - -bash-3.2\$ **ssh** dtn01.nersc.gov
- Start HPSS storage client "hsi"
 - -bash-3.2\$ **hsi**
- Enter NERSC password at prompt (first time only)

```
Generating .netrc entry... nickb@auth2.nersc.gov's password:
```

You should now be logged into your archive home directory

```
Username: nickb UID: 33065 Acct: 33065(33065) Copies: 1 Firewall: off [hsi.3.4.5 Wed Jul 6 16:14:55 PDT 2011][V3.4.5_2010_01_27.01] A:/home/n/nickb-> quit
```

Subsequent logins are now automated

Using HSI: Hands-on

- Using ssh, log into any NERSC compute platform
 -bash-3.2\$ ssh dtn01.nersc.gov
- Create a file in your home directory
 -bash-3.2\$ echo foo > abc.txt
- Start HPSS storage client "hsi"
 - -bash-3.2\$ **hsi**
- Store file in archive
 A:/home/n/nickb-> put abc.txt
- Retrieve file and rename
 A:/home/n/nickb-> get abc_1.txt : abc.txt
 A:/home/n/nickb-> quit
- Compare files*

-bash-3.2\$ **sha1sum abc.txt abc_1.txt** f1d2d2f924e986ac86fdf7b36c94bcdf32beec15 abc.txt f1d2d2f924e986ac86fdf7b36c94bcdf32beec15 abc 1.txt

^{*} Note: checksums supported in the next HSI release with: 'hsi 'put -c on local_file : remote_file'

Using HTAR: Hands-on

- Using ssh, log into any NERSC compute platform
 -bash-3.2\$ ssh dtn01.nersc.gov
- Create a subdirectory in your home directory
 -bash-3.2\$ mkdir mydir
- Create a few files in the subdirectory

```
-bash-3.2$ echo foo > ./mydir/a.txt
-bash-3.2$ echo bar > ./mydir/b.txt
```

- Store subdirectory in archive as "mydir.tar" with HTAR -bash-3.2\$ htar -cvf mydir.tar ./mydir
- List newly created aggregate in archive
 -bash-3.2\$ htar -tvf mydir.tar
- Remove local directory and contents -bash-3.2\$ rm -rf ./mydir
- Extract directory and files from archive -bash-3.2\$ htar -xvf mydir.tar

National Energy Research Scientific Computing Center

Section Title

